Pasos	Descripción	Desarrollo
1.	Primero ingresaremos a la página de la Bolsa Mexicana de Valores (www.bmv.com.mx)	Congel bray Conge

En la parte superior dar clic en Empresas pestaña de Emisoras; mostrara se Listado de empresas emisoras. **S**Grupo BMV Búsqueda 🔯 Cotización 🔯 última Emisora Seleccionada Listado de empresas emisoras Comité de Emise ABCDEFGHIJKLMNOPQRSTUVWXYZTodas Analista Independien Todos ARCA CONTINENTAL, S.A.B. DE C.V. ACCEL, S.A.B. DE C.V.
CORPORACION ACTINVER, S.A.B. DE C.V. GRUPO AEROMÉXICO, S.A.B. DE C.V. AGRO INDUSTRIAL EXPORTADORA, S.A. DE C.V. ALTOS HORNOS DE MEXICO, S.A. DE C.V. ALFA, S.A.B. DE C.V. ALPEK, S.A.B. DE C.V. ALSEA, S.A.B. DE C.V. AMERICA MOVIL, S.A.B. DE C.V CONSORCIO ARA, S.A.B. DE C.V.
CONSORCIO ARISTOS, S.A.B. DE C.V.
GRUPO AEROPORTUARIO DEL SURESTE, S.A.B. DE C.V. COMPAÑIA MINERA AUTLAN, S.A.B. DE C. V AXTEL, S.A.B. DE C.V. TV AZTECA, S.A.B. DE C.V. BACHOCO INDUSTRIAS BACHOCO, S.A.B. DE C.V. GRUPO BAFAR, S.A.B. DE C.V. BANCO BILBAO VIZCAYA ARGENTARIA, S.A FARMACIAS BENAVIDES, S.A.B. DE C.V. FARMACIAS BENAVIDES, S.A.B. DE C.V.
GRUPO BIMBO, S.A.B. DE C.V.
BOLSA MEXICANA DE VALORES, S.A.B. DE C.V.
SORAS LESAS CABLEVISION, S.A. DE C.V. Figura 1.1 Listado de empresas emisoras

3. Para este caso selecciona la empresa Bio Pappel S.A.B de C.V. (PAPPEL); direccionara a la Información de la empresa.

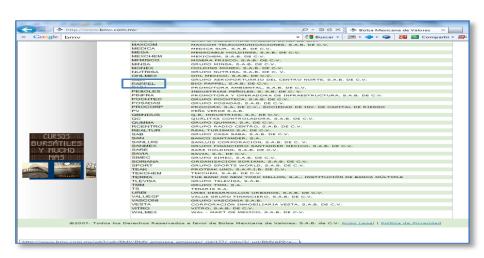


Figura 1.1 Selección de emisora

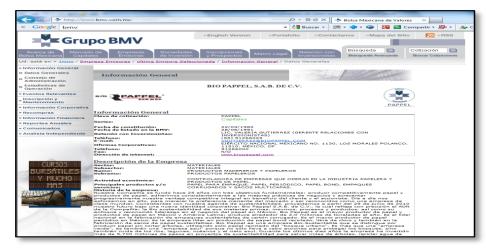
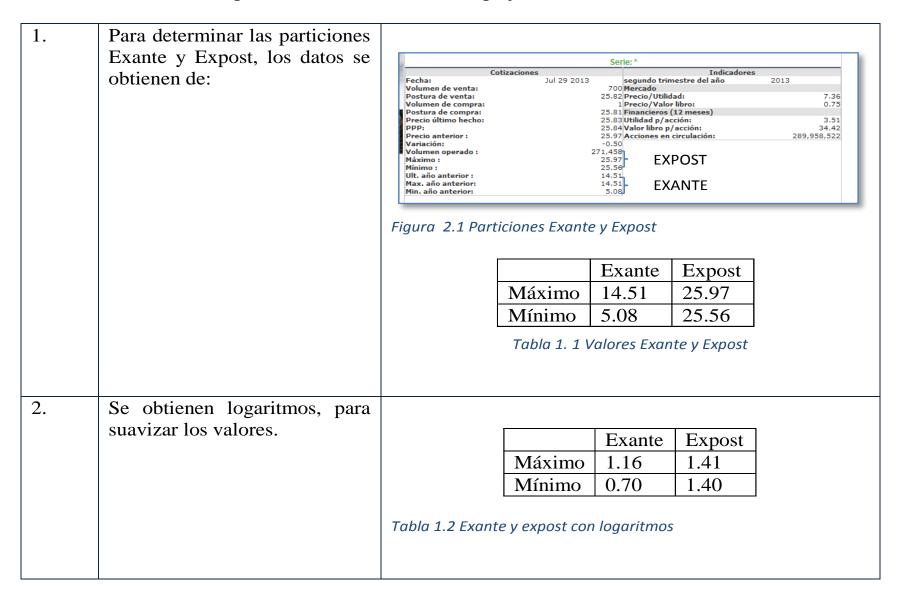
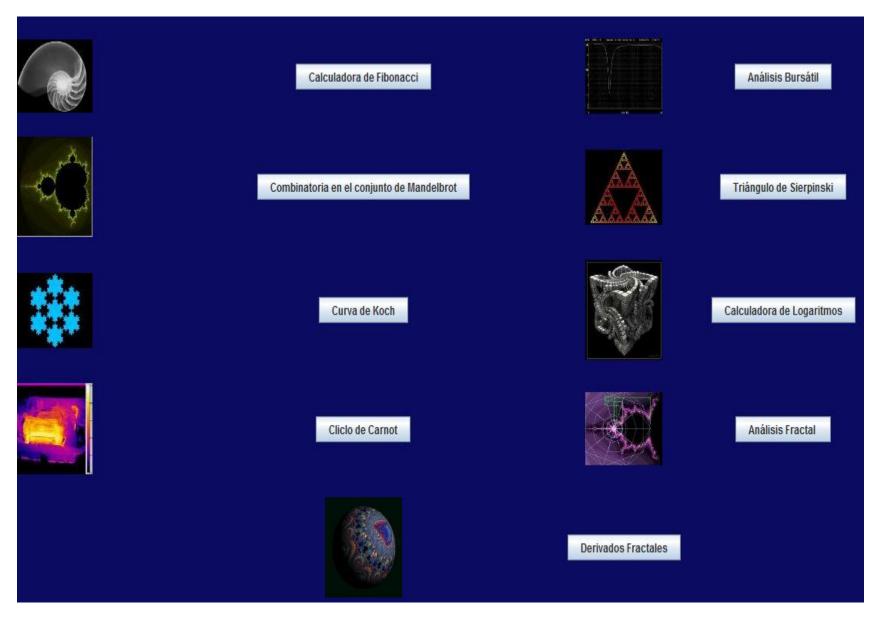



Figura 1.2 Información general de la emisora

4. En la parte derecha dar clic en Estadísticas de Operación, la cual los enviara a la Información financiera de la empresa emisora.

Figura 1.1 Estadísticas de operación



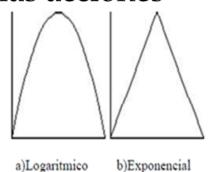
www.usc.es

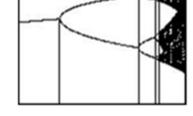
Facultad de Ciencias Económicas y Empresariales de la Universidad de Santiago de Compostela (España).

Economía financiera → Fractales

Mercado de capitales	Índice bursátil	Número
		de
		emisoras
Bolsa de Franfuk	Dax-30	235
Bolsa de Londres	Tse	247
Bolsa de Paris	Cac-40	138
Bolsa de Tokio	Nikkie-225	104
Bolsa de New York	Standar and poor's	76
Bolsa de México	IPyC	130

Definición y tipología


Logística fractal del mercado de capitales

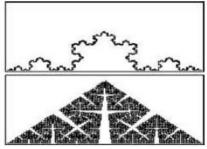

X=f(y)

Y=f(x)

Precios de las acciones

Análisis técnico para modelación logarítmica

c)Tridimensional



$$\begin{split} M_{\beta} &= \beta_0 + \beta_1(tc) + \beta_2(dv) + \beta_3(pm) + \beta_4(tr) + \beta_5(ic) + \beta_6(pc) + \xi^2 \\ \partial M_{\beta} &= \beta_0 + \frac{\partial(tc)}{\beta_1} + \frac{\partial(dv)}{\beta_2} + \frac{\partial(pm)}{\beta_3} + \frac{\partial(tr)}{\beta_4} + \frac{\partial(ic)}{\beta_5} + \frac{\partial(pc)}{\beta_6} \xi^2 \\ dM &= d\beta_0 + \frac{d\beta_1(tc)}{dx} + \frac{d\beta_2(dv)}{dx} + \frac{d\beta_3(pm)}{dx} + \frac{d\beta_4(tr)}{dx} + \frac{d\beta_5(ic)}{dx} + \frac{d\beta_6(pc)}{dx} + \xi^2 \end{split}$$

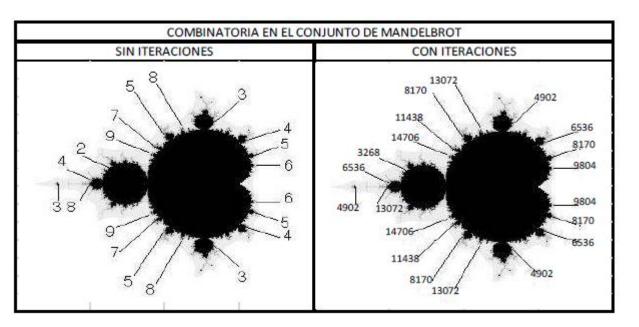
a) Horizontal (Este-Oeste)

Care San

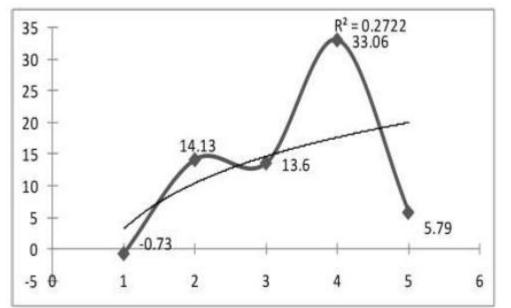
b) Vertical (Norte-Sur³¹)

$$M = \int \frac{-1\beta_0^{360}}{-1\beta_1(tc)^{270}} \left[\frac{\beta_2(dv)^{190}}{\beta_3(pm)^{-1^{180}}} \right] + \int \frac{-1\beta_4(tr)^{360}}{-1\beta_5(ic)^{270}} \left[\frac{\beta_6(pc)^{190}}{\beta_n(vpc)^{-1^{180}}} \right]$$

$$\mathbf{M} = \frac{\frac{\log \beta_0}{360^{\circ}}}{\frac{\ln \beta_1}{(-tc)270^{\circ}}} + \frac{\frac{\log \beta_2}{(dv)90^{\circ}}}{\frac{\ln \beta_3}{(-pm)180^{\circ}}} + \frac{\frac{\log \beta_4}{(-tr)360^{\circ}}}{\frac{\ln \beta_5}{(-ic)270^{\circ}}} + \frac{\frac{\log \beta_6}{(pc)90^{\circ}}}{\frac{\ln \beta_n}{(vpc)180^{\circ}}} + \left[\frac{\frac{\log \neq}{(\infty)90^{\circ}}}{\frac{\ln \xi}{180^{\circ}}}\right]^2$$


$$((x, y), (x', y')) = ((x - x') 2 + (y - y') 2)^{1/2}$$

$$d(T(x, y), T(x', y')) \le r \cdot d((x, y), (x', y'))$$


$$d(T(x, y), T(x', y')) = r \cdot d((x, y), (x', y'))$$

	Máximo		Máximo	
Variación	ex	Mínimo	ex	Mínimo
	post ⁷⁷	ex post	ante ⁷⁸	ex ante
-0.73	14.13	13.6	33.06	5.79

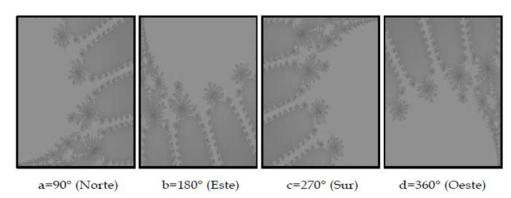
	Emisora	130	Z=	39.11	C=	38.56		
	Z1 =	50.58513742	Z16 =	26.08760587	Z31 =	77.64347535	Z 46 =	33.2479089
	Z2 =	78.09506263	Z 17 =	29.13950151	Z32 =	77.05041994	Z47 =	10.4805927
	Z3 =	67.95983424	Z 18 =	29.19674603	Z33 =	78.59983452	Z4 8 =	58.4629619
	Z4 =	40.69433695	Z19 =	23.39856276	Z34 =	65.52795958	Z 49 =	40.6411476
	Z5 =	31.25345071	Z20 =	27.80470046	Z35 =	77.63413358	Z50 =	39.0734201
7	Z6 =	27.19941182	Z21 =	32.75610994	Z36 =	39.31394305		
	Z 7 =	45.89680474	Z 22 =	45.04906488	Z 37 =	40.66004884		
	Z8 =	68.13814246	Z 23 =	1.424980935	Z38 =	40.66004884		
1	Z 9 =	40.69433695	Z 24 =	33.13538462	Z39 =	35.69270353		
_	Z10 =	51.52711699	Z25 =	11.14210889	Z40 =	31.73136673		
	Z11 =	79.02599595	Z26 =	30.30640645	Z41 =	13.74828976		
	Z12 =	45.16280142	Z 27 =	31.89019777	Z42 =	38.07663411		
	Z13 =	23.40416147	Z28 =	33.01048779	Z43 =	32.90980464		
	Z14 =	23.47771387	Z29 =	11.88943781	Z44 =	39.15057903		
	Z15 =	38.06785611	Z30 =	40.69433695	Z45 =	12.10352767		

1.66	Promedio ⁶⁸
1.66*2	3.32
1.66*3	4.98
1.66*4	6.64
1.66*5	8.32
1.66*6	9.96
1.66*7	11.62
1.66*8	13.28
1.66*9	14.94

$$\frac{\partial n}{\partial c} := \frac{\partial \text{ Max}}{\partial \text{ Max}} \int_{\partial_{-} \infty}^{\partial_{-} \infty} \frac{\partial \text{ P1}}{\partial \text{ C1}} \frac{\partial \text{ W1}}{\partial \text{ C1}} \frac{\partial \text{ E1}}{\partial \text{ C1}} + \frac{\partial \text{ P2}}{\partial \text{ C2}} \frac{\partial \text{ W2}}{\partial \text{ E2}} \frac{\partial \text{ E2}}{\partial \text{ C2}}$$
Nivel de confianza medio .666=
$$\frac{\partial n}{\partial c} := \frac{\partial \text{ Max}}{\partial \text{ Max}} \int_{\partial_{-} \infty}^{\partial_{-} \infty} \frac{\partial \text{ P1}}{\partial \text{ C1}} \frac{\partial \text{ W1}}{\partial \text{ C1}} \frac{\partial \text{ E1}}{\partial \text{ C1}} + \frac{\partial \text{ P2}}{\partial \text{ C2}} \frac{\partial \text{ W2}}{\partial \text{ C2}} \frac{\partial \text{ E2}}{\partial \text{ C2}}$$
Nivel de confianza alto .999=
$$\frac{\partial n}{\partial \text{ C1}} := \frac{\partial \text{ Max}}{\partial \text{ C1}} \int_{\partial_{-} \infty}^{\partial_{-} \infty} \frac{\partial \text{ P1}}{\partial \text{ C1}} \frac{\partial \text{ W1}}{\partial \text{ E1}} \frac{\partial \text{ E1}}{\partial \text{ C2}} + \frac{\partial \text{ P2}}{\partial \text{ C2}} \frac{\partial \text{ W2}}{\partial \text{ E2}} \frac{\partial \text{ E2}}{\partial \text{ C2}}$$

d- ∞ dC1 dC1 dC1

82 Nivel de confianza bajo .333=

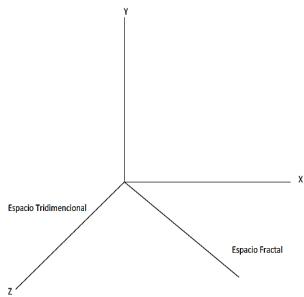

∂ Max

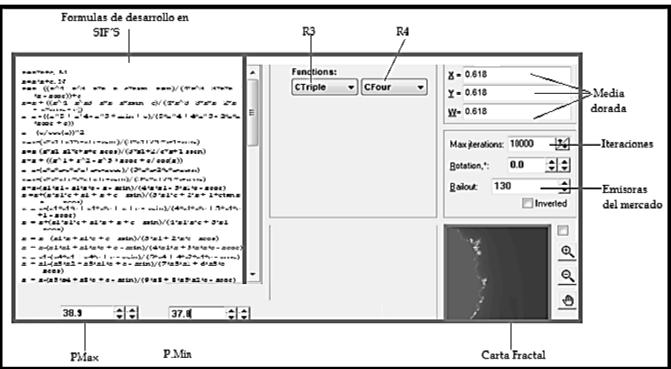
дc

∂C2 ∂C2 ∂C2

Mapeo fractal de las acciones

Matices de Kelly y evidencias del MBF




Modelación con Estadística de GIS'F

Términos de margen y costo

Identificación de periodos

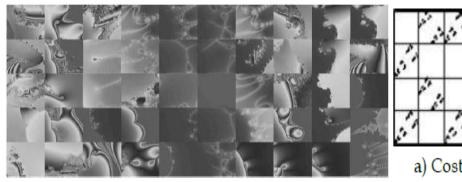
Duplicación a escala y aperiodicidad de intermitencia

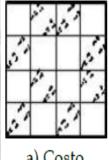
5-E-90'	3-E-56'	4-E-220'	6-N-145'	6-N-34'
5-S-90'	3-S-56'	4-S-220'	6-S-145'	6-S-34'
1-0-67'	4-0-45'	5-S-45'	7-S-24'	4-N-35'
5-E-45'	7-N-90'	2-N-220'	1-E-91'	4-S-35'
5-0-45'	7-0-90'	2-0-220'	1-0-91'	2-E-36'
123456789 50p				0

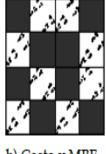
1,2,3,4,5,6,7,8,9,.....50,n

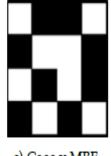
45′,25′,37′,280′,......360′

Ν

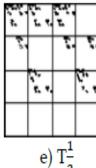

S

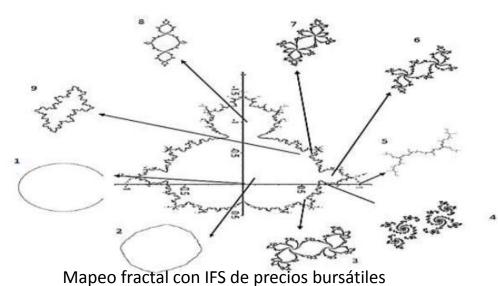

E


O


Mapeo fractal con IFS de precios bursátiles

RAMOS-María, PhD




a) Costo

b) Costo y MBF

c) Caos y MBF

d) Margen

((\$E\$4+F4)/(\$G4\$H\$4))*LOG((0.5)*(\$K\$4-\$L\$4))	((((K\$4-L\$4)^(I\$4-J4))/((E\$4+F\$4)-(G\$4-
	H\$4)))^0.5)
(((\$E\$4-\$J4)+(\$F\$4-3))/((\$G\$4-\$J4)-(\$H\$4-	(((\$K\$4-J4)-(\$L\$4-J4))/(((E\$4-3)+(\$F\$4-
\$J4)))^LOG((J4-0.5)*((\$K\$4-\$L\$4)-(J4)))	3))-((\$G\$4-3)-(\$H\$4-3))))^(\$I\$4-\$J\$4)^(J4-
	0.5)
(((E4-J4)+(F4-J4))/((G4-J4)+(H4-J4)))^(LOG((J4-	(((E4-J4)*(F4-J4))/((G4-J4)*(H4-
0.5)*((K4-L4)-(J4))))	J4)))/(LOG((J4-0.5)*((K4-L4)-(J4))))
((E1+F1)/(G1-H1))^(0.5*J1)	(((K1-L1)^J1)/((E1+F1)-(G1-H1)))^0.5
((E2+F2)/(G2-H2))^(0.5*J2)	(((K2-L2)^J2)/((E2+F2)-(G2-H2)))^0.5
((\$E\$4+F4)/(\$G4\$H\$4))*LOG((0.5)*(\$K\$4-\$L\$4))	((((K\$4-L\$4)^(I\$4-J4))/((E\$4+F\$4)-(G\$4-
	H\$4)))^0.5)

$$z_0 \in C$$
, z_0 es un punto atractor sí $|f'(z_0)| < 1$

$$Z_0 \in C$$
, Z_0 es un punto indiferente sí $|f'(z_0)| = 1$ $Z_0 \in C$, Z_0 es un punto super atractor sí $|f'(z_0)| = 0$

RAMOS-María, PhD

CONCLUSIONES:

El uso de Geometría Fractal para prospectación y pronostico en la BMV es de utilidad fiable para las operaciones financieras a nivel macroeconómico y microeconómico.

A nivel macroeconómico:

- i) Para el país, se precisara con mayor exactitud el ciclo financiero como principal detonador del ciclo económico.
- ii) Para la investigación, se mostraran los instrumentos de aplicación con evidencia empírica del modelo fractal-tridimensional.

A nivel microeconómico:

- i) Para el accionista e inversionista, su decisión de compra y venta de sus activos financieros le evitará pérdidas posteriores.
- ii) Para las bolsas de valores, como intermediario de estos dos agentes, estarán en mejor condiciones de asesorar objetivamente a sus clientes, mejora el ejercicio de su función de fomento, supervisión y operatividad interna.

Referencias

RAMOS, M. (2011). Periods of fractal duplication and aperiodicity of intermittency in the prices of the market of the financial economy. 03-2011-050312515200-01. México.

RAMOS, M. (2011). Technology of Hurts with Chaos in "H" and the approach fractal: (R/S), (P/S), (R/L) and (Vg): It demonstrates of the economic sectors in Mexico. 03-2011-050312492300-01. México.

RAMOS, M. (2011). Dinámica financiera actual . Edit. ECORFAN. México.

RAMOS, M. (2011).FEFA (fractales y la económica financiera actual).ISBN: 978-607-00-4660-5. México.

RAMOS, M. (2012). Fractal analysis of international stock market transactions. Revista Anales de Economía Aplicada. España.

RAMOS, M. (2012). Fractal approach: The chaos and the theoretical evolution of capital markets. Revista Anales de Economía Aplicada. España.

RAMOS, M. (2012). Fractal modeling IBEX-35 in a context of financial crisis. Facultad de Ciencias Económicas. Universidad Complutense de Madrid.

RAMOS, M. (2012). Fractales VS Finanzas. Salón de Grados de la Facultad de Ciencias Económicas y empresariales. Universidad de Santiago de Compostela.

RAMOS, M. (2012). Modelación fractal aplicada a los índices bursátiles de Europa. Seminario de uso de Algoritmos. Salón de Grados de la Facultad de Ciencias Económicas y empresariales. Universidad de Burgos.

RAMOS, M., MIRANDA,F. (2012). Breviario de Geometría en R3. 03-2012-1264.España.

RAMOS, M., MIRANDA,F. (2012). Breviario de Poliedros teóricos. 03-2012-1262. España.

RAMOS, M., MIRANDA,F. (2012). Breviary of fractal algorithms.Edit. Andavira. España.

RAMOS, M., MIRANDA, F. (2012). EM-MAF-Code. 03-2012-1260. España.

RAMOS, M., MIRANDA,F. (2012). Fractals and Finance Dictionary. 03-2012-1265. España.

RAMOS, M., MIRANDA,F. (2012). Lógica histórica del Espacio geométricofractal.Edit. Andavira. España.